
What You Need is What You Get: Theory of Mind
for an LLM-Based Code Understanding Assistant

Jonan Richards , Mairieli Wessel
Radboud University

Nijmegen, The Netherlands
jonan.richards@ru.nl, mairieli.wessel@ru.nl

Abstract—A growing number of tools have used Large Lan-
guage Models (LLMs) to support developers’ code understanding.
However, developers still face several barriers to using such
tools, including challenges in describing their intent in natural
language, interpreting the tool outcome, and refining an effective
prompt to obtain useful information. In this study, we designed an
LLM-based conversational assistant that provides a personalized
interaction based on inferred user mental state (e.g., background
knowledge and experience). We evaluate the approach in a
within-subject study with fourteen novices to capture their
perceptions and preferences. Our results provide insights for
researchers and tool builders who want to create or improve
LLM-based conversational assistants to support novices in code
understanding.

Index Terms—LLM, LLM-based tools, comprehension sup-
port, user perceptions, novice developers

I. INTRODUCTION

Large Language Models (LLMs) have shown promising
results supporting code comprehension tasks and are often
perceived as useful by developers [1]–[3]. However, the extent
to which users benefit from these tools depends on their back-
ground knowledge and experience levels [3], [4]. Developers
often experience difficulty in writing prompts that are effective
at addressing their information needs [2], [3], particularly
novices [5]. Many studies suggest the potential of AI assistants
learning from users to create personalized guidance [1], [4],
[6]. In fact, successful explanations should fill the gaps in
questioners’ background knowledge [7], while using language
that is understandable to the questioner [8]. Combined, these
findings indicate a need for LLMs to infer and adapt to devel-
opers’ needs, intents, knowledge, experience, and preferences.

Humans’ ability to reason about what others are thinking
is called Theory of Mind (ToM). LLMs have performed well
on a range of ToM tasks [9]–[11]. Whether this is due to
LLMs having an innate ToM capacity [12] or their ability to
find shallow heuristics to perform well [13] remains an open
debate. Still, by reflecting on users’ minds, LLMs can produce
insightful information in practical settings [14].

We hypothesize that LLMs can gather a substantial amount
of useful ToM information from interactions between a devel-
oper trying to understand unfamiliar code, and a conversational
agent. This led us to create a conversational agent called
ToMMY (Theory of Mind: Making explanations Yours).
ToMMY comprises a chain of prompts meant to generate
insights about a developer’s mental state. It then uses these

insights to provide personalized explanations about code. In
this paper, we evaluate how ToMMY compares to a more
basic agent. Our work is the first application and evaluation
of ToM prompting techniques in LLMs supporting Software
Engineering activities. This study focuses on the following
research questions:
RQ1 How do novices interact with LLM-based assistants

when trying to understand unfamiliar code?
RQ2 How does using ToMMY impact novices’ code under-

standing?
RQ3 How do novices perceive interacting with LLM-based

assistants to understand unfamiliar code?
To answer these research questions, we conducted a within-

subject study with 14 novices, including undergraduate and
graduate students. Participants interacted with each approach
(ToMMY vs. simple conversational agent) individually and
comparatively. Our findings reveal that novices exhibited
distinct interaction styles based on whether they phrased
some questions as hypotheses (or not). While interacting
with ToMMY, participants less frequently stated their intent
or asked follow-up questions, and slightly more often pro-
vided instructions regarding the response format. Also, using
ToMMY had distinct impacts on novices’ code understanding
depending on their interaction styles. We made our supple-
mentary material available for replication purposes [15].

II. RELATED WORK

Researchers have investigated how developers use and in-
teract with LLMs for development-related tasks [1], [2], [16]–
[18]. Ross et al. [1], [18] suggests adapting programming
assistants to the individual strengths and needs of its users
toward providing personalized responses. A growing number
of tools have also recently brought LLMs into the code
editor to support code understanding [3], [19], [20]. Nam
et al. [3], for instance, proposed an approach that supports
on-demand explanations of code. Complementing previous
literature, we focused on personalizing developers’ interactions
with conversational LLM-based code understanding assistants
using existing Theory of Mind prompting techniques.

III. TOMMY’S DESIGN

The design of ToMMY was motivated by findings from
previous studies of LLMs, which found that predicting and
reflecting on mental states improve LLMs’ performance [10],

https://orcid.org/0009-0007-1218-8599
https://orcid.org/0000-0001-8619-726X

[14]. Furthermore, perspective-taking is an effective way to
enhance the ToM performance of LLMs [11], [21]. Wilf et al.
[21] highlights the need to separate mental state inference and
question answering into two prompts. The prompt engineering
process was conducted through manual evaluation, in addition
to a pilot study used to evaluate the last iteration of prompts.

The first of ToMMY’s three prompts identifies aspects of
the user’s mental state relevant to producing a response, and
phrases these as open questions about the user. Not having this
step, and directly prompting for the user’s mental state, was
found to produce irrelevant mental state data. In the second
prompt, we instruct the LLM to take the perspective of the user
to answer these questions, based on the conversation history.
These answers constitute the inferred mental state. Finally, in
the third prompt, the LLM is instructed to respond to the user,
considering the mental state.

Each of ToMMY’s prompts includes context for the LLM,
containing a code snippet, the conversation history, and the
user’s latest input. The basic agent, used as a control condition
in the user study, comprises a single prompt containing the
same context, and an instruction to respond to the user.

The LLM we used in our evaluation was GPT-3.5, a
common choice in research on LLMs for Software Engineer-
ing [22]. We set the model’s temperature, a hyper-parameter
related to output randomness, to 0. This helped isolate the
impact of using different prompts. We limited the history to
the 10 most recent interactions, and capped the length of input
messages to 1,000 characters, to prevent the prompt from
overflowing the LLM’s token limit. A pilot study exposed no
issues with this strategy.

IV. RESEARCH DESIGN

When preparing and executing this study, we followed the
guidelines set by Radboud’s Research Ethics Committee and
received approval from that committee to conduct our study.
Pilot sessions. We conducted pilot sessions with three novice
programmers: one PhD student, one master’s student, and one
third-year bachelor’s student. The participants suggested a few
minor adjustments, which were incorporated into ToMMY and
the experiment instruments. Due to the participant’s fatigue,
we time-boxed the code understanding tasks (20 minutes) and
quizzes (10 minutes). Data from pilot sessions were discarded.
Participant recruitment. We used a convenience sampling
strategy to recruit participants for our experiment sessions,
inviting students through (i) short presentations at lectures, (ii)
study programme-wide messaging groups, and (iii) outreach to
personal contacts. The study was not part of any course; all
participants were volunteers and signed a consent form before
their sessions. The only prerequisite was a low-level program-
ming experience (e.g., having taken a programming-related
course or having coded as a hobby). In total, 6 undergraduate
and 8 graduate students were recruited. Their experience with
programming ranged between low and experienced (with an
average 5.7 on a scale from 1 to 10). Participants also reported
having low (2), moderate (7), considerable (2), and extensive
(1) familiarity with LLMs.

Experimental sessions. We conducted a series of synchronous
within-subject sessions with participants using both ToMMY
(treatment) and the basic agent (control). Using variance
minimization [23], participants were sorted into two groups
balanced in terms of participants’ programming experience,
LLM familiarity, and background knowledge regarding natural
language processing and data analysis. This grouping was
used to determine the order in which the two agents were
encountered, mitigating order effects.

Before the session, participants received email instructions,
a survey with demographic questions, and a consent form. Par-
ticipants could choose between online or in-person sessions.
Each session started with a brief explanation of the research
objectives and guidelines. Then, participants were asked to
complete two code comprehension tasks (one with each con-
versational agent). Participants were presented with a different
code snippet for each task and tasked with understanding it as
thoroughly as possible within a 20-minute time limit.

We induced the participant’s need to interact with the agents
by choosing code snippets that require domain knowledge to
understand (i.e., data analysis and natural language process-
ing). The two code snippets written in Python were carefully
selected from open-source repositories on GitHub and not used
for prompting engineering. Code comments were removed
to increase the need for understanding, but typos or other
implementation choices were left.

After each task, to measure their code understanding we
asked participants to complete a few closed-ended questions
inspired by previous literature [24] (max. 10 minutes). We also
asked them to complete a mid-term survey (right after the first
task) and a post-study survey at the end of the experiment to
elicit their perceptions of the approaches.
Web-based evaluation interface. To enable the user study,
we developed a custom-built web-based tool. This tool in-
cluded a chat interface (Figure 1- 2) for interacting with the
conversational agents, alongside a code snippet (Figure 1- 4)
to mimic the experience of being in a code editor. It also
displayed instructions and allowed participants to navigate
the study steps (i.e., tasks, quiz questions, and evaluation
forms). Participants could track their progress in the left-side
menu (Figure 1- 1). A timer for each step was also displayed
(Figure 1- 3).

Fig. 1: Web-based interface designed for the experiment

Data analysis. We analyzed participants’ interactions with the
agents (RQ1) using open card sorting [25]. First, the first
two authors independently analyzed the inputs for the first
two participants (cards) and applied codes, sorting them into
meaningful groups. A discussion meeting followed this step
until a consensus was reached on the categorization. The first
author then coded the remainder of the participant interaction
data. The researchers analyzed the categories to refine the
classification and group-related codes into higher-level themes.

To answer RQ2, we used linear regression to assess each
approach’s impact, considering the effect of participants’ pro-
gramming experience, background experience, and familiar-
ity with LLM tools. We chose these three metrics as our
independent variables and a variable to indicate whether a
participant used our approach for the task. To measure code
understanding, we considered the number of correct answers
on the quizzes and the time participants took to complete
the task. We fit two separate regression models to these
two dependent variables. After observing distinct patterns
during the qualitative analysis of participants’ interactions,
we performed additional analysis for code understanding. We
fit two more regression models on the quiz scores: one for
participants who interacted by phrasing hypotheses and the
other for participants who did not.

In RQ3, we assessed the perceived usefulness, ease of use,
and cognitive load of working with each agent by applying
the Technology Acceptance Model (TAM) [26] and Task
Load Index (NASA-TLX) [27], respectively. Additionally,
we quantitatively analyzed the open feedback collected after
completing each task. This was processed using card sorting,
similar to RQ1.

V. FINDINGS

A. Interaction (RQ1)

Participants did not interact more frequently, or for a longer
time, with either agent (Table I). This was determined using
two-sided paired t-tests (Shapiro-Wilk tests showed normality
of differences for these variables, p = 0.88 and 0.43 respec-
tively).

Control ToMMY

mean std mean std p-value

of interactions 7.21 4.56 7.14 4.70 0.96
Interaction time (s) 739.00 363.66 717.14 319.38 0.72

TABLE I: Average number of interactions and interaction time
per participant for each task, broken down by model.

In our qualitative analysis of the participants’ inputs, we
grouped the codes into 5 categories, which are described in
the following sections.
Question. All but four of the 201 recorded interactions
contained a question, and only one input contained two
questions. These question were phrased either as an open
question (“What does ... do?”), a hypothesis (“Does ... do
...?”), an instruction (“Explain ...”), or implicitly (e.g. by only
providing a line of code for the agent to explain). We clustered

participants based on if they phrased at least one question as
a hypothesis, and found that 6 out of 14 participants did. We
found that this cluster had significantly more interactions and
spent a significantly longer time interacting with the agents
than the participants who did not use hypotheses (using two-
sided Mann-Whitney U tests, Figure 2). The difference in
programming experience and LLM familiarity between these
clusters of participants was negligible.

No hypotheses Hypotheses

mean std mean std p-value

Programming exp. 4.81 1.94 4.67 1.83 0.95
LLM familiarity 2.88 0.83 3.17 0.98 0.67
of interactions 10.25 6.86 19.83 5.49 0.02*

Interaction time (s) 1072.25 490.63 1968.00 443.95 0.01**

*p < 0.05, **p < 0.01, ***p < 0.001

TABLE II: Participants’ background experience and interac-
tion statistics, broken down by participants who did not (left)
and did (right) use hypotheses.

Question target. This can be either a fine-grained code feature
(such as syntax, a variable, a line of code or multiple lines of
code); the entire snippet; an external code feature (such as an
external function call or a library); or a programming concept.
Figure 2 shows that participants who did not phrase questions
as hypotheses tended to ask more questions about the entire
snippet, compared to participants who did employ hypotheses.
Instead, the latter more often targeted their questions at fine-
grained code features. There were no discernible patterns
regarding which agent was used.

Fig. 2: Distribution of question targets, broken down by
participants who did not (left) and did (right) use hypotheses.

Question intent. Most questions did not specify what aspect
of a code feature they wanted the agent to explain (e.g. in
“What does ... do?”). Sometimes, however, the intended aspect
was explicitly provided. We observed high-level, abstract
aspects such as the purpose, rationale, or outcome of code,
and low-level aspects such as the value of an expression, the
effect of modifying a variable, or a trace of multiple lines
of code. There was a slight difference in the proportion of
interactions that contained an explicit intent between the two
agents: 30% for the control agent and 25% for ToMMY. This
difference was also observed between participants using and
not using hypotheses: 29% and 26%, respectively.
Conversation. Some of the inputs exhibited additional conver-
sational features, such as following up on a question posed to

the agent’s response or polite phrasing (e.g. “Can you explain
...?”). There was a noticeable difference in the prevalence of
follow-up questions: 15% of interactions for participants who
did use hypotheses and 10% for those who did not, and 15%
for the control approach compared to 11% for ToMMY.
Instruction. In some instances, participants provided instruc-
tions on how the response should be formatted, such as asking
for a detailed, short, step-by-step, or summarized response.
This happened slightly more often for ToMMY than for
the control approach: 5% compared to 2% of interactions,
respectively. There was a negligible difference when looking
at the participants grouped by their use (or not) of hypotheses.

B. Code understanding (RQ2)

Quiz score Quiz time (s)
N=28, R2

CS=0.15 N=28, R2
CS=0.44

coeff. std p-value coeff. std p-value

Intercept 1.19 0.27 0.00*** 593.15 110.16 0.00***

Uses ToMMY 0.05 0.10 0.61 −28.94 43.24 0.50
Programm. exp. 0.10 0.03 0.00** −39.38 12.40 0.00**

Domain exp. −0.01 0.03 0.71 −9.42 8.96 0.29
LLM familiarity −0.09 0.04 0.02* 36.06 25.91 0.16

*p < 0.05, **p < 0.01, ***p < 0.001

TABLE III: Regression models showing the effect of several
variables on quiz scores and completion times. The number of
observations (2 per participant) is indicated with N .

Table III shows that the only factors found significantly to
impact code understanding were programming experience and
familiarity with LLMs. The positive coefficient for the scores
model and negative coefficient for the time model shows that
greater programming experience enables participants to score
higher and finish the quizzes faster. Curiously, the reverse is
true for familiarity with LLMs, although insignificantly so for
quiz completion time.

No hypotheses Hypotheses
N=16, R2

CS=0.26 N=12, R2
CS=0.19

coeff. std p-value coeff. std p-value

Intercept 0.93 0.27 0.00*** 1.66 0.36 0.00***

Uses ToMMY 0.34 0.11 0.00** −0.28 0.16 0.07
Programm. exp. 0.12 0.04 0.00** 0.06 0.03 0.05
Domain exp. −0.05 0.03 0.08 0.01 0.03 0.80
LLM familiarity −0.06 0.04 0.17 −0.15 0.09 0.09

*p < 0.05, **p < 0.01, ***p < 0.001

TABLE IV: Regression models showing the effect of several
variables on quiz scores, wherein participants are grouped
by their interaction style. The number of observations (2 per
participant) is indicated with N .

No significant effects of using ToMMY are found when
taking all participants into account. However, when fitting
separate regression models to participants based on their
interaction style, we do observe an effect (Table IV). Using
ToMMY contributes greatly to quiz scores for participants who
did not phrase questions as hypotheses, but negatively impacts
the scores of participants who did. The latter result is not
significant, although it approaches the significance threshold
of p < 0.05.

C. Perceptions (RQ3)

Metrics. No significant differences in TAM and TLX scores
were found between the two approaches (using two-sided
Wilcoxon signed-rank tests, Table V). What stands out, how-
ever, is a lower mean but large standard deviation for the “ef-
fort” item of the TLX scores for ToMMY (M=2.77, SD=4.46)
compared to the control agent (M=4.00, SD=1.68). This may
suggest that ToMMY reduced perceived effort compared to the
control approach, but this effect greatly varied per participant.

Control ToMMY

mean std mean std p-value

Perceived usefulness 6.18 0.76 6.09 0.76 0.66
Perceived ease of use 6.27 0.73 6.05 0.97 0.54
TLX score (avg.) 0.45 1.69 0.38 2.58 0.74

TABLE V: Comparison of TAM and TLX scores.

Feedback. Both agents were seen as helpful and knowledge-
able. Participants indicated that they liked the way their ques-
tions were answered and related back to the code. ToMMY
was reported to understand the participants’ questions well
and produce clear answers (n=3 and 4, respectively). This
sentiment was also shared, although slightly less frequently,
for the control approach (n=2 and 3, respectively). Further-
more, P11 and P14 noted that they had to rephrase their
question or provide more details to the control agent after
it did not understand their question on the first try. P6 and
P7 reported not always understanding the control agents’
responses, causing P6 to ask for clarification several times.

Both the control approach and ToMMY were found to
respond thoroughly, and in some cases with too much detail.
Looking at Figure 3, ToMMY seems to produce slightly
shorter responses. However, when questions are phrased as
hypotheses, ToMMY much more consistently replies with a
shorter answer than the control approach. This suggests that
ToMMY is better at recognizing when users just want to vali-
date whether their interpretation of the code snippet is correct.
Curiously, P1 found that the control approach appeared to
“better fit the length of the answer to the question”, which
does not align with our interpretation of Figure 3. Another
counter-intuitive finding is P6 perceiving the control agent to
produce shorter responses, while P4 perceived the opposite.
Occasionally, the control agent did not answer as extensively
as participants would have liked (P6, P10), a problem that was
not encountered with ToMMY.

P4 noticed that ToMMY often seemed to respond with
single paragraphs, whereas the control usually formatted its
responses by emphasizing certain words. While the partici-
pant perceived ToMMY’s answers to be much shorter, they
preferred the control agent’s longer, formatted responses. This
was echoed by P13, reporting that ToMMY alternated between
formatting its responses as lists and as single paragraphs,
which they perceived as inconsistent. Two more participants
(P8, P11) commented positively on the format of the control
approach’s responses. Additionally, P3 and P4 noted that
ToMMY tended to end its answers with “if you have more

Fig. 3: Distribution of response length, broken down by model
and whether or not the question was phrased as a hypothesis.

questions, feel free to ask”, which they experienced to be
repetitive and useless.

VI. DISCUSSION

Several participants interacted with the agents by phrasing
hypotheses, often aimed at fine-grained code features, and
asking many follow-up questions. This aligns with Brook’s
top-down model of code comprehension [28], which poses
that programmers iteratively generate, test, and refine hy-
potheses by scanning the code. The other participants asked
only open questions, sometimes phrased as instructions, and
relatively frequently aimed these at the entire snippet. This
corresponds to the bottom-up model of code comprehen-
sion [29], stating that programmers recursively answer open
“what” questions [30] about chunks of code and combine the
resulting knowledge until the entire program is understood.
These interaction styles were not associated with differences
in background experience.

Participants more often reported ToMMY to understand
their question and produce clear answers than the control
agent. Additionally, some participants commented negatively
about the control agent on these aspects. Combined with
participants less often explicitly stating their intent or asking
follow-up questions to ToMMY, this suggests that ToMMY
was able to better recognize participants’ intent and adapt re-
sponses to their background experience. ToMMY also adjusted
the length of its responses to the type of question more than
the control agent did. However, this was not always perceived
as such by participants. We suspect this is due to ToMMY’s
responses often being formatted as a single paragraph, which
might introduce usability issues seen in the literature [16].

No differences in perceived usefulness, ease of use, and
cognitive load were found between the two agents. Using
ToMMY had a positive impact on quiz scores for participants
with a bottom-up comprehension style, and a negative effect
for participants exhibiting a top-down comprehension style.
The latter group of participants more frequently asked targeted
questions with explicit intent, which may have diminished the
benefit of ToMMY’s mental state inference. For all of these
metrics, a negative impact of ToMMY’s response format may
have obscured other positive effects.

Our results imply LLMs can personalize responses indepen-
dently on some aspects, but may need guidance on others. This
guidance could entail explicitly prompting the LLM for certain

elements of mental state (”What preferences does the user have
regarding the response format?”), or even providing explicit
instructions (”If the user asks a yes-no question, provide a
minimal response.”).

Future research include retaining and building on knowledge
inferred in earlier interactions with ToMMY, to provide more
robust and accurate mental inference. Retrieval-Augmented
Generation [31] has shown promising results for storing user’s
mental data [14], and may be suitable for conversational
programming assistants as well. Additionally, ToMMY being
situated in a social, conversational environment allows for a
more robust evaluation of new ToM prompting techniques than
commonly-used basic tasks [32]. Also, designing an interface
for users to inspect and provide feedback on the inferred
mental data would bring ToMMY closer to allowing a “Mutual
Theory of Mind” [33]. The resulting increase in transparency
and fairness towards the user would also better align the agent
with existing human-AI interaction guidelines [34].

VII. LIMITATIONS

Prompt engineering and validation are notably difficult.
We validated our prompt design choices through manual
observations and a small-scale pilot study. However, small
changes to ToMMY’s prompts may lead to unexpected side
effects and ultimately different results. Moreover, our sam-
ple was composed of students. Although they are novices
[35], we acknowledge that additional research is necessary
to consider the perspective of practitioners experienced with
LLMs. Also, within-subject studies are vulnerable to learning
effects, fatigue, and other order effects. Varying the order in
which participants interacted with the agents counteracted this.
While the code snippets were carefully selected and modified
to have similar complexity, using other snippets may produce
different outcomes. Since we leverage qualitative research
methods to categorize the open-ended questions asked in our
surveys and the participant’s interactions with the agents, we
may have introduced categorization bias. To mitigate this bias,
we conducted this process in pairs and carefully discussed
categorization among the authors.

VIII. CONCLUSION

In this paper, we took the first steps towards personalizing
developers’ interactions with a code understanding assistant
by proposing ToMMY, an assistant that can infer develop-
ers’ mental states and adapt its responses. Although some
novice programmers reported a good experience when using
ToMMY, more research is still needed to understand how
to structure its content. Interestingly, we also found that
novices’ interaction styles with the agent can significantly
impact ToMMY’s effectiveness. Researchers and tool builders
can leverage our approach to better adjust to users’ needs,
ensuring less cognitive load from users when interacting with
the tool.

Acknowledgments. We thank the novice programmers who
spent their time participating in our research.

REFERENCES

[1] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz,
“The Programmer’s Assistant: Conversational Interaction with a Large
Language Model for Software Development,” in Proceedings of the 28th
International Conference on Intelligent User Interfaces. Sydney NSW
Australia: ACM, Mar. 2023, pp. 491–514.

[2] R. Khojah, M. Mohamad, P. Leitner, and F. G. De Oliveira Neto,
“Beyond Code Generation: An Observational Study of ChatGPT Usage
in Software Engineering Practice,” Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, pp. 1819–1840, Jul. 2024.

[3] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an LLM to Help With Code Understanding,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering.
Lisbon Portugal: ACM, Apr. 2024, pp. 1–13.

[4] G. Pinto, C. De Souza, T. Rocha, I. Steinmacher, A. Souza, and
E. Monteiro, “Developer Experiences with a Contextualized AI Coding
Assistant: Usability, Expectations, and Outcomes,” in Proceedings of the
IEEE/ACM 3rd International Conference on AI Engineering - Software
Engineering for AI. Lisbon Portugal: ACM, Apr. 2024, pp. 81–91.

[5] S. Nguyen, H. M. Babe, Y. Zi, A. Guha, C. J. Anderson, and M. Q.
Feldman, “How Beginning Programmers and Code LLMs (Mis)read
Each Other,” in Proceedings of the CHI Conference on Human Factors
in Computing Systems. Honolulu HI USA: ACM, May 2024, pp. 1–26.

[6] A. E. Hassan, G. A. Oliva, D. Lin, B. Chen, Z. Ming, and Jiang,
“Rethinking Software Engineering in the Foundation Model Era:
From Task-Driven AI Copilots to Goal-Driven AI Pair Programmers,”
arXiv:2404.10225, Apr. 2024.

[7] J. Faye, “Explanation Explained,” Synthese, vol. 120, no. 1, pp. 61–75,
1999.

[8] D. Walton, “A new dialectical theory of explanation,” Philosophical
Explorations, vol. 7, no. 1, pp. 71–89, Mar. 2004.

[9] S. R. Moghaddam and C. J. Honey, “Boosting Theory-of-Mind Perfor-
mance in Large Language Models via Prompting,” arXiv:2304.11490,
Apr. 2023.

[10] P. Zhou, A. Madaan, S. P. Potharaju, A. Gupta, K. R. McKee, A. Holtz-
man, J. Pujara, X. Ren, S. Mishra, A. Nematzadeh, S. Upadhyay, and
M. Faruqui, “How FaR Are Large Language Models From Agents with
Theory-of-Mind?” arXiv:2310.03051, Oct. 2023.

[11] Q. Zhu, L. Chong, M. Yang, and J. Luo, “Reading Users’ Minds from
What They Say: An Investigation into LLM-based Empathic Mental
Inference,” arXiv:2403.13301, Mar. 2024.

[12] M. Jamali, Z. M. Williams, and J. Cai, “Unveiling Theory of Mind in
Large Language Models: A Parallel to Single Neurons in the Human
Brain,” arXiv:2309.01660, Sep. 2023.

[13] N. Shapira, G. Zwirn, and Y. Goldberg, “How Well Do Large Language
Models Perform on Faux Pas Tests?” in Findings of the Association
for Computational Linguistics: ACL 2023, A. Rogers, J. Boyd-Graber,
and N. Okazaki, Eds. Toronto, Canada: Association for Computational
Linguistics, Jul. 2023, pp. 10 438–10 451.

[14] C. Leer, V. Trost, and V. Voruganti, “Violation of Expectation via
Metacognitive Prompting Reduces Theory of Mind Prediction Error in
Large Language Models,” arXiv:2310.06983, Oct. 2023.

[15] J. Richards and M. Wessel, “Replication package for ”What You
Need is What You Get: Theory of Mind for an LLM-Based
Code Comprehension Assistant”,” Aug. 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.13270637

[16] J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on
the usability of ai programming assistants: Successes and challenges,”
in Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1–13.

[17] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading Between
the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming,” in Proceedings of the CHI Conference on Human Factors in
Computing Systems. Honolulu HI USA: ACM, May 2024, pp. 1–16.

[18] S. I. Ross, S. Houde, F. Martinez, M. Muller, and J. D. Weisz,
“The Programmer’s Assistant User Experience,” in 28th International
Conference on Intelligent User Interfaces. Sydney NSW Australia:
ACM, Mar. 2023, pp. 102–104.

[19] M. Liffiton, B. E. Sheese, J. Savelka, and P. Denny, “Codehelp: Using
large language models with guardrails for scalable support in program-
ming classes,” in Proceedings of the 23rd Koli Calling International
Conference on Computing Education Research, 2023, pp. 1–11.

[20] L. Yan, A. Hwang, Z. Wu, and A. Head, “Ivie: Lightweight anchored
explanations of just-generated code,” in Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems, 2024.

[21] A. Wilf, S. S. Lee, P. P. Liang, and L.-P. Morency, “Think Twice:
Perspective-Taking Improves Large Language Models’ Theory-of-Mind
Capabilities,” arXiv:2311.10227, Nov. 2023.

[22] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large Language Models for Software Engi-
neering: A Systematic Literature Review,” arXiv:2308.10620, Apr. 2024.

[23] F. Sella, G. Raz, and R. Cohen Kadosh, “When randomisation is not
good enough: Matching groups in intervention studies,” Psychonomic
Bulletin & Review, vol. 28, no. 6, pp. 2085–2093, Dec. 2021.

[24] C. Izu, C. Schulte, A. Aggarwal, Q. Cutts, R. Duran, M. Gutica,
B. Heinemann, E. Kraemer, V. Lonati, C. Mirolo, and R. Weeda,
“Fostering Program Comprehension in Novice Programmers - Learning
Activities and Learning Trajectories,” in Proceedings of the Working
Group Reports on Innovation and Technology in Computer Science
Education. Aberdeen Scotland Uk: ACM, Dec. 2019, pp. 27–52.

[25] T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives on
Data Science for Software Engineering. Elsevier, 2016, pp. 137–141.

[26] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS quarterly, pp. 319–340,
1989.

[27] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” in Advances in
psychology. Elsevier, 1988, vol. 52, pp. 139–183.

[28] R. Brooks, “Towards a theory of the comprehension of computer
programs,” International Journal of Man-Machine Studies, vol. 18, no. 6,
pp. 543–554, Jun. 1983.

[29] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in
programmer behavior: A model and experimental results,” International
Journal of Computer & Information Sciences, vol. 8, no. 3, pp. 219–238,
Jun. 1979.

[30] S. Letovsky, “Cognitive processes in program comprehension,” Journal
of Systems and Software, vol. 7, no. 4, pp. 325–339, Dec. 1987.

[31] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,”
in Advances in Neural Information Processing Systems, vol. 33. Curran
Associates, Inc., 2020, pp. 9459–9474.

[32] Z. Ma, J. Sansom, R. Peng, and J. Chai, “Towards A Holistic Landscape
of Situated Theory of Mind in Large Language Models,” Findings of
Empirical Methods in Natural Language Processing, Nov. 2023.

[33] Q. Wang and A. K. Goel, “Mutual Theory of Mind for Human-AI
Communication,” arXiv:2210.03842, May 2024.

[34] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson,
J. Suh, S. Iqbal, P. N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, and
E. Horvitz, “Guidelines for Human-AI Interaction,” in Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems.
Glasgow Scotland Uk: ACM, May 2019, pp. 1–13.

[35] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” in
Proceedings of the 38th International Conference on Software Engineer-
ing, ser. ICSE ’16. New York, NY, USA: Association for Computing
Machinery, May 2016, pp. 273–284.

https://doi.org/10.5281/zenodo.13270637

	Introduction
	Related Work
	ToMMY's design
	Research Design
	Findings
	Interaction (RQ1)
	Code understanding (RQ2)
	Perceptions (RQ3)

	Discussion
	Limitations
	Conclusion
	References

